django-undermythumb Documentation
Release

2011, Pitchfork Media, Inc.

September 10, 2011

CONTENTS

django-undermythumb Documentation, Release

undermythumb is a simple thumbnailing library for Django with a twist: its fields can optionally fall back to
thumbnails from another field.

This app is currently used around Pitchfork, and is under active development.

Issues can be reported here.

CONTENTS 1

http://pitchfork.com/
https://github.com/pitchfork/django-undermythumb/issues

django-undermythumb Documentation, Release

2 CONTENTS

CHAPTER
ONE

WHY ANOTHER THUMBNAILER?

At Pitchfork, we needed a simple way to cut thumbnails, place them on the field’s storage, do without fancy renderers
we’d never use, and give editors a simple way to override auto-generated thumbnails without littering our templates
with unnecessary logic.

http://pitchfork.com

django-undermythumb Documentation, Release

4 Chapter 1. Why another thumbnailer?

CHAPTER
TWO

BASIC EXAMPLE

Inmodels.py:

from django.db import models

from undermythumb. fields import (ImageWithThumbnailsField,
ImageFallbackField)
from undermythumb.renderers import CropRenderer

class BlogPost (models.Model) :
title = models.CharField (max_length=100)

an image with thumbnails
artwork = ImageWithThumbnailsField(
max_length=255,
upload_to="artwork/’,
thumbnails=(('’ homepage_image’, CropRenderer (300, 150)),
("pagination_image’, CropRenderer (150, 75))),
help_text="Blog post header artwork.’)

an override field, capable of rolling up a dotted path

1f the field is empty.

‘‘fallback path'' should point to something that returns an ‘‘ImageFieldFile'",
or anything that has an ‘‘url'' attribute, and displays an image.

#

#

under the hood, this is just an ImageField.
homepage_image = ImageFallbackField(
fallback_path=’artwork.thumbnails.homepage_image’,
upload_to="artwork/’,
help_text='Optional override for "homepage_image" thumbnail.’)

def _ unicode_ (self):
return self.title

In a template, where object is an instance of BlogPost:

<!-— does the job: auto-generated thumbnail from "artwork" -->

<!-— smarter: value of "homepage_image", or, if empty, value of "artwork.thumbnails.homepage_image"

django-undermythumb Documentation, Release

6 Chapter 2. Basic example

CHAPTER
THREE

FALLING BACK? WHAT?

Sometimes system generated thumbnails are ugly, or need to be overridden. In this case, offering an override field
allows designers and editors a way to control the thumbnail used across your site.

Sometimes, default thumbnails are perfect, and no additional work is required.

The easiest way to account for both scenarios is to have a single field that allows an optional override, and can fall
back to another image if no override is needed.

This way,
* Content editors need only cut thumbnails when what the system’s generated

* Developers need only reference one thumbnail field in templates and code

django-undermythumb Documentation, Release

8 Chapter 3. Falling back? What?

CHAPTER
FOUR

DOCUMENTATION

4.1 Installation

Installing via PyPI is recommended, unless you're planning on some hacking.
1. Install via PyPI:

pip install django-undermythumb

2. Add " undermythumb’ to your INSTALLED_APPS setting:

INSTALLED_APPS = (
#oo..

"undermythumb’,

4.2 Fields

The following fields (and concepts) are offered by undermythumb.

4.2.1 Available fields

undermythumb comes with two fields, each with specific use cases.

ImageWithThumbnailsField

The name says it all — this field is used to accept an image and cut thumbnails. Thumbnails are stored using whatever
storage is available to the field.

Defining thumbnails

Thumbnails are defined as a tuple of tuples passed as thumbnails to the field.

Each tuple is defined as (thumbnail key, renderer instance). The thumbnail key becomes the thumb-
nail’s key when using the field’s thumbnails attribute to display a thumbnail, and part of the filename generated on
creation.

Example:

django-undermythumb Documentation, Release

artwork = ImageWithThumbnailsField(
thumbnails = ((’related_content’, CropRenderer (150, 150)),),
upload_to="artwork/’,

)

In the example above, artwork has one thumbnail: related_content.
In a template (or Python code), you can access related_content via thumbnails:

{# assuming ’object’ is an instance of your model #}
{{ object.artwork.thumbnails.related_content.url }}

Note: For a complete list of renderers, see: List of available renderers.

ImageFallbackField

This field is only a subclass of Django’s ImageField with the ability to use images or thumbnails from another

field.

This field came out of the need to offer a way to optionally override another field’s thumbnail. To fall back to another

field or thumbnail’s value, simply define a dotted path to another model attribute. Using the example, above:

related_content_image = ImageFallbackField(
fallback_path="artwork.thumbnails.related_content’,
upload_to="artwork/’

)

Since this is at its core an ImageField, using in a template is as simple as:

{# assuming ’object’ is an instance of your model #}
{{ object.related_content_image.url }}

But, here’s what makes it special — as defined, this field will do one of two things when accessed:
1. If the field has a value (a file has been uploaded), it will return that value.

2. If the field is empty, it will return the thumbnail from its fallback
artwork.thumbnails.related_content.

4.3 Renderers

4.3.1 List of available renderers

ResizeRenderer

Resizes an image, maintaining the image’s aspect ratio.
Example:

resize an image to 150px wide, 84px tall
ResizeRenderer (150, 84)

If you would like to ignore the aspect ratio, pass in constrain=False.

path,

10 Chapter 4. Documentation

django-undermythumb Documentation, Release

CropRenderer

Resizes an image, crops to an area.
Example:

resize an image to 150 on it’s largest side,
and select a 150x150 square from the center.x
CropRenderer (150, 150)

Internally, CropRenderer uses PIL’s ImageOps. fit to scale and select the image.

LetterboxRenderer

Resizes an image using the ResizeRenderer and centers over a given background color. Background colors are provided
as hex values.

Example:

resize an image, place on black background
LetterboxRenderer (150, 150, bg_color="#000000")

4.3.2 Creating your own renderers

Better documentation forthcoming. In the meantime, subclass undermythumb.renderers.BaseRenderer
and implement custom image logic in a method called _render.

4.3. Renderers 11

